Igusa’s p-adic local zeta function associated to a polynomial mapping and a polynomial integration measure
نویسندگان
چکیده
منابع مشابه
A p-adic algorithm to compute the Hilbert class polynomial
Classicaly, the Hilbert class polynomial P∆ ∈ Z[X] of an imaginary quadratic discriminant ∆ is computed using complex analytic techniques. In 2002, Couveignes and Henocq [5] suggested a p-adic algorithm to compute P∆. Unlike the complex analytic method, it does not suffer from problems caused by rounding errors. In this paper we complete the outline given in [5] and we prove that, if the Genera...
متن کاملp-ADIC LOGARITHMS FOR POLYNOMIAL DYNAMICS
We prove a dynamical version of the Mordell-Lang conjecture for subvarieties of the affine space A over a p-adic field, endowed with polynomial actions on each coordinate of A. We use analytic methods similar to the ones employed by Skolem, Chabauty, and Coleman for studying diophantine equations.
متن کاملUniform p-adic cell decomposition and local zeta functions
The purpose of this paper is to give a cell decomposition for p-adic fields, uniform in p. This generalizes a cell decomposition for fixed p, proved by Denef [7], [9]. We also give some applications of our cell decomposition. A first implication is a uniform quantifier elimination for p-adic fields. Beiair [2], Delon [6] and Weispfenning [16] obtained quantifier elimination in other languages, ...
متن کاملLocal Polynomial Variance Function Estimation
The conditional variance function in a heteroscedastic, nonparametric regression model is estimated by linear smoothing of squared residuals. Attention is focussed on local polynomial smoothers. Both the mean and variance functions are assumed to be smooth, but neither is assumed to be in a parametric family. The eeect of preliminary estimation of the mean is studied, and a \degrees of freedom"...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Manuscripta Mathematica
سال: 2011
ISSN: 0025-2611,1432-1785
DOI: 10.1007/s00229-011-0497-y